Weighted Projective Lines and Rational Surface Singularities
نویسندگان
چکیده
منابع مشابه
Automorphisms of real rational surfaces and weighted blow-up singularities
Let X be a singular real rational surface obtained from a smooth real rational surface by performing weighted blow-ups. Denote by Aut(X) the group of algebraic automorphisms of X into itself. Let n be a natural integer and let e = [e1, . . . , el] be a partition of n. Denote by Xe the set of l-tuples (P1, . . . , Pl) of distinct nonsingular curvilinear infinitely near points of X of orders (e1,...
متن کاملThe Poincaré Duality of a Surface with Rational Singularities
In this article, we proof the Poincaré duality with coefficient Ql on a surface with isolated rational singularities. INTRODUCTION The Poincaré duality theorem in the étale cohomology was established in [1, XVIII, 3.2] on the smooth varieties. But in many times, the duality on singular varieties has to be considered. In this paper, we study the surfaces with at most isolated rational singularit...
متن کاملNoncommutative Resolutions and Rational Singularities
Let k be an algebraically closed field of characteristic zero. We show that the centre of a homologically homogeneous, finitely generated kalgebra has rational singularities. In particular if a finitely generated normal commutative k-algebra has a noncommutative crepant resolution, as introduced by the second author, then it has rational singularities.
متن کاملCombinatorics of rational singularities
A normal surface singularity is rational if and only if the dual intersection graph of a desingularization satisfies some combinatorial properties. In fact, the graphs defined in this way are trees. In this paper we give geometric features of these trees. In particular, we prove that the number of vertices of valency ≥ 3 in the dual intersection tree of the minimal desingularization of a ration...
متن کاملF-rational Rings Have Rational Singularities
It is proved that an excellent local ring of prime characteristic in which a single ideal generated by any system of parameters is tightly closed must be pseu-dorational. A key point in the proof is a characterization of F-rational local rings as those Cohen-Macaulay local rings (R; m) in which the local cohomology module H d m (R) (where d is the dimension of R) have no submodules stable under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Épijournal de Géométrie Algébrique
سال: 2020
ISSN: 2491-6765
DOI: 10.46298/epiga.2020.volume3.4761